Extensions 1→N→G→Q→1 with N=C4 and Q=C322C8

Direct product G=N×Q with N=C4 and Q=C322C8
dρLabelID
C4×C322C896C4xC3^2:2C8288,423

Semidirect products G=N:Q with N=C4 and Q=C322C8
extensionφ:Q→Aut NdρLabelID
C4⋊(C322C8) = (C3×C12)⋊4C8φ: C322C8/C3⋊Dic3C2 ⊆ Aut C496C4:(C3^2:2C8)288,424

Non-split extensions G=N.Q with N=C4 and Q=C322C8
extensionφ:Q→Aut NdρLabelID
C4.(C322C8) = C62.4C8φ: C322C8/C3⋊Dic3C2 ⊆ Aut C4484C4.(C3^2:2C8)288,421
C4.2(C322C8) = C322C32central extension (φ=1)964C4.2(C3^2:2C8)288,188
C4.3(C322C8) = C2×C322C16central extension (φ=1)96C4.3(C3^2:2C8)288,420

׿
×
𝔽